The Purification of Cytochrome c Peroxidase (CCP) as a GST-fusion Protein, and the Mass Spectrometric Detection and Characterization of its Protein-Based Radicals on Reaction with H₂O₂

Meileen Joynt and Ann M. English

Department of Chemistry and Biochemistry, Concordia University, Montreal QC H3G 1M8

Cytochrome c peroxidase (CCP) from *Saccharomyces cerevisiae* removes H_2O_2 by using cytochrome c as a terminal electron acceptor for mitochondrial respiration. However, in the absence of exogenous donors, CCP can turn over up to 10 equivalents of H_2O_2 by oxidation of endogenous donors on the polypeptide, thereby generating as many as 20 proteinbased radicals. The detection and characterization of the sites of radical formation is of interest since recent results suggest that under elevated H_2O_2 conditions, the transcription factor *Pos9* (*Skn7*) is induced by CCP, which leads to the production of antioxidant genes such as thioredoxin. Here, previously constructed GST-CCP, in which mature CCP gene was cloned into pGEX 2T vector, was expressed in *E. coli*. Expression of the construct produced, based on small-scale trials, was approximately 16 mg of CCP per L of culture.

The stable nitroxide radical 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO⁻) was used to scavenge the CCP-based radicals produced upon incubation with 10 fold excess of H_2O_2 . The resulting adducts were analyzed by mass spectrometry (MS) and the specific amino acid site of radical formation was determined by MS/MS.