Basic Crystallography

Crystals and Bragg’s Law

Amy Sarjeant
Some semantics (yes, it’s important)

- **Spectroscopy/Spectrometry vs. Diffraction**
 - **Spectrum:** an array of entities, such as light waves or particles, ordered in accordance with the magnitudes of a common physical property, such as wavelength or mass.
 - **Diffraction:** the breaking up of an incoming wave by some sort of geometrical structure – for example, a series of slits – followed by reconstruction of the wave by interference.
 - **Diffraction is NOT energy dispersive**
 - (that would be XPS, EDS, XRF)

- **The meaning of peaks...**
 - NMR/MS/IR etc. peaks have information about specific chemical moieties
 - Each XRD peak has information about EVERYTHING
Crystallography – what can it do?

• Solid state structure determination
 – Connectivity
 – Molecular morphology
 – Interactions
 – Packing
 – Surfaces
 – Porosity
• Phase transitions
 – Temperature / Pressure dependent
• Charge Density
• Modulation
Crystallography – what can’t it do?

• Solid state structure determination
 – No gas/liquid phase information
 – Limited dynamics
 – Usually energetically minimized
 – No ab initio elemental analysis

• Synthetic limitations
 – Must have a crystalline material
 – Must be large enough
 – Must be stable
 • Can overcome temperature/humidity/oxidation/light within limits
Some History

• X-Rays Discovered in 1895 by Wilhelm Röntgen
• First diffraction experiment theorized by Max von Laue
• Carried out by Friedrich and Knipping in 1912.
• Nobel Prizes:
 – 1901 – Röntgen
 – 1914 – von Laue
 – 1915 – Bragg’s
 – ... 29 in all (http://www.iucr.org/people/nobel-prize)
Why Crystals?

• What is a crystal?
 – Regularly shaped
 – High degree of long-range order and repetition
 – Yields a sharp diffraction pattern

• What is a good crystal?
 – Single
 – No re-entrant faces
 – Appropriately sized
 • Typically 0.05-0.6mm
 – Not just pretty on the outside
Crystals – how do you get them?

- Crystal growth
 - Directly from reaction
 - Slow and steady (literally)
 - Solvent/solution based
 - Slow evaporation
 - Slow cooling
 - Vapor diffusion
 - Liquid diffusion
 - Sublimation

http://xray.chem.uwo.ca/Guides.html
Unit Cells

- Smallest unique part of a crystal that can be translated *through space* to reproduce the entire crystal
- Parallelepiped defined by 3 non-coplanar vectors
 - Magnitudes = a, b, c
 - Angles = α, β, γ
 - Atomic coordinates = x, y, z
Unit cells
Miller Indices

- (100)
- (010)
- (001)
- (110)
- (111)

<table>
<thead>
<tr>
<th>Indices</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>
Diffraction

- The bending of a wave front around an object, as with light passing through a suitably small slit.
- Constructive interference
Diffraction gratings

- Two Rays (1 & 2) are diffracted by a grating.
 - AB = CD (on the way in)
 - FG = EH (on the way out)
- Difference in pathlengths
 - DE – BF = n\(\lambda\)
- Using geometry
 - DE = a\(\cos\alpha_o\)
 - BF = a\(\cos\alpha\)
 - Therefore: \(n\lambda = a(\cos\alpha_o – \cos\alpha)\)
- Laue Equations
 - \(a(\cos\alpha_o – \cos\alpha) = h\lambda\)
 - \(b(\cos\beta_o – \cos\beta) = k\lambda\)
 - \(c(\cos\gamma_o – \cos\gamma) = l\lambda\)
Bragg’s Law

- William Henry (father) and William Lawrence Bragg (son)
 - Lawrence did most of the work
 - Both won the Nobel Prize in 1915

- Conceptualized diffraction as a reflection

\[
\begin{align*}
\text{AB} + \text{BC} &= n\lambda \\
2\text{AB} &= n\lambda \\
2(d \sin \theta) &= n\lambda
\end{align*}
\]

\[
\boxed{n\lambda = 2d \sin \theta}
\]
Reciprocal Space

\[n\lambda = 2d \sin \theta \]

- Rearrange Bragg’s Law: \[\frac{2 \sin \theta}{n\lambda} = \frac{1}{d} \]

- Diffraction pattern is reciprocal of crystal lattice

- Reflection from planes \((hkl)\) is the r.l. point \(hkl\) at a distance \(1/d_{hkl}\) from the origin and perpendicular to the planes

- What is the relationship between the crystal (real, direct) lattice and the diffraction pattern (reciprocal lattice)?