2H decoupled-1H,13C,15N-triple experiment in 3 channels machine

From: Wu Jihui (wujihui@ustc.edu.cn)
Date: Tue May 07 2002 - 03:23:46 PDT


Dear BUMers,
    Our machine is Avance 500, equipped with 3 channels and z-gradient,
TXI probe, and new installed 2H-TX board (please see attached files for
more details, sorry for attaching so many files), worked under
xwinnmr-2.6 . Now I have one question about 2H-decoupled-1H,13C,15N
triple experiment. There are some 2H-decoupled-triple pulse programs
supplied by Bruker, but all use f4 for 2H decoupling(e.g. hncags2h3d).
Now my question is: is the pulse program can be used in our machine ? if
can, how to setup 'edasp', I meant, the experiment setup uses four
channel, f1 to f4 ? Someone told me, with current hardware setup of our
machine, that is, three channel and a 2H-TX board and lock-switch, such
2H-decoupled-1H,13C,15N-triple experiments can be done, but need special
programming. I have heard there is a so call decouple mode of 2H-TX
board, but don't know what it meant. Who can show me how to modify the
pulse program ? At best give me a sample program and related setup
file(I meant, acqu,acqu2,etc). Any suggestion will be appreciated. Thank
you very much.

Wu Jihui

--
Wu Jihui email: wujihui@ustc.edu.cn
                Tel. 0086-551-3603745 (NMR lab)
                Fax. 0086-551-3603754
     School of Life Science,  Univ. of Science and Technology of China
                Hefei, Anhui, 230026    P.R.of China

# hardware.exam: list of all hardware detectable by 'cf' # # To copy one of these entries into 'hardware_list' proceed as described: # # - delete all lines except the one you want to copy: # vi hardware.exam # usable vi commands: dd (delete 1 line), <n>dd (delete n lines) # :wq # hardware.exam should now contain the desired entry only! # # - if available: insert EC-level and SN to keep data up to date: # vi hardware.exam # insert EC-level and serial number # :wq # # - move hardware.exam into instrument directory: # cd `cat curinst` # mv ../hardware.exam . # # - insert desired entry into hardware_list: # su (become superuser) # cp hardware_list hardware_save (make backup) # vi hardware_list # move cursor into line where you want to insert the new entry # :r hardware.exam (insert file) # :wq # # finished: hardware_list should now contain the new entry. # ######################################################################### # # PN-C | PN-D | PN-E | ECL | SN | description/comment # # Transmitter entries | | H5483| | |ACB Board # # HP-transmitter entries # # Receiver entries | | Z03680| | |SE451 500 (SE451 RG table, no Quad Mixer) # # Router entries | | Z002496| | |Avance-Router # # Cryo Controller Unit # # Magnet Control entries | | Z002700| | |BSMS # # NMR-Interface entries # # PTS entries | | O0573| | |PTS-620D 1MHZ (2 outputs, 620 MHz max, 309.00 MHz doubling) | | O0973| | |PTS-620 1MHZ (1 output, 620 MHz max, 309.00 MHz doubling) # Preemphasis Units | | H5530| | |BGU-IIZ for shielded Z-gradient # Automatic Changer Units # BPSUs # MAS Units # # Variable Temperature Units | |W1100624| | |VTU B-VT2000 (in console)

CONFIGURATION INFORMATION =========================

Date : Sun Feb 3 08:42:08 2002 Release : XWIN-NMR Acquisition Version 2.6-pl0 on ustc-dmx500 User : Administrator System : DMX spectrometer 1H-frequency : 500.13 MHz hardware info: using "C:/Bruker/XWIN-NMR/conf/instr/dmx500/hardware_list"

RCU1: - DRAM = 16 kByte - SRAM = 1 kByte - FIFO = 1024 kByte - HRD16 installed, HW-Code: 0 Digitizers : - HRD16

RCU2:

Router : - Avance-Router

Synthesizers : - PTS-620D 1MHZ : for F1/F2, 620 MHz max, doubling frequency = 309.00MHz - PTS-620 1MHZ : for F3, 620 MHz max, doubling frequency = 309.00MHz

Amplifier Control Board: connected to dmx500:/dev/tty04 RO Amplifier Module Nucleus Power/W Switchbox 1 1 1 X 300 2 2 1 1H 100 yes 3 2 2 1H 1.0 4 2 3 1H 10 5 3 1 X 300

ASU's (BBIS configuration) - connected to FCU1: 2 MODs, 1 MULT - connected to FCU2: 2 MODs, 1 MULT - connected to FCU3: 2 MODs, 1 MULT

BSMS Unit: connected to dmx500:/dev/tty07

2H-TX Amplifier: - connected to router output 3 - Warning: The 2H amplifier in the BSMS uses router output 3 which is selected by the 1.0W H Amplifier

RO Amplifier Module Nucleus Power/W Switchbox 1 1 1 X 300 2 2 1 1H 100 yes 3 3 1 2H 20 4 4 1 1H 10 5 5 1 X 300

4PH-Modulator: not available

Receiver : - SE451 RG table, 1 T-FX board (SE451 500)

Frequency generation: - F1: for SE-451 TFX - F2: for SE-451 TFH - F3: direct

Lock display: connected to dmx500:/dev/tty03

Eurotherm VTU unit: connected to /dev/05

Preemphasis Unit : - BGU-IIZ connected to dmx500:/dev/tty06 for shielded Z-gradient

#-------------------- # FCU configuration: #-------------------- board # 1 : MEMORY 0x3f000 (=63 k Words) PAL-Version 0x1 old PAL version (EC level 06 or less) board # 2 : MEMORY 0x3f000 (=63 k Words) PAL-Version 0x1 old PAL version (EC level 06 or less) board # 3 : MEMORY 0x3f000 (=63 k Words) PAL-Version 0x1 old PAL version (EC level 06 or less)

Preamplifiers: - HPPR preamplifier 1 connected to dmx500:/dev/tty01 module 1: 2H Module module 3: 1H Module module 4: X-BB19F_2HS Module

##TITLE= Parameter file, XWIN-NMR Version 2.6 ##JCAMPDX= 5.0 ##DATATYPE= Parameter Values ##ORIGIN= Bruker Analytik GmbH ##OWNER= Administrator $$ Sun Feb 3 08:42:36 2002 (UT+8h) Administrator@USTC-DMX500 $$ C:/Bruker/XWIN-NMR/conf/instr/dmx500/uxnmr.par ##$ACB= 1 ##$ACBTAT= (0..15) 0 88 72 50 72 88 0 0 0 0 0 0 0 0 0 0 ##$ACBTBA= (0..15) 0 30 60 0 70 150 0 0 0 0 0 0 0 0 0 0 ##$ACBTCTL= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$ACBTDI= (0..15) 0 70 71 72 71 74 0 0 0 0 0 0 0 0 0 0 ##$ACBTDM= (0..15) 0 10 25 0 0 10 0 0 0 0 0 0 0 0 0 0 ##$ACBTFHI= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$ACBTFL= (0..15) 0 249 249 8 123 249 0 0 0 0 0 0 0 0 0 0 ##$ACBTFLO= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$ACBTOUT= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$ACBTPO= (0..15) 0 300000 100000 20000 10000 300000 0 0 0 0 0 0 0 0 0 0 ##$ACBTPW= (0..15) 0 200 5000 0 0 200 0 0 0 0 0 0 0 0 0 0 ##$ACBTSB= (0..15) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$ACBTY= <04> ##$ATT19F= (0..1) -1 -1 ##$ATT1H= (0..1) -1 -1 ##$ATT3H= (0..1) -1 -1 ##$ATTX= (0..1) -1 -1 ##$ATTY= (0..1) -1 -1 ##$ATTZ= (0..1) -1 -1 ##$BACSTY= <no> ##$BARPTY= <no> ##$BFREQ= 500.13 ##$BIRDS= no ##$BMPC= 0 ##$BMPCTY= <no> ##$BPSUTY= <no> ##$BSMS= 1 ##$BSMSTY= <07> ##$CFASMOD= (0..7) 2 2 2 0 0 0 0 0 ##$CFASMUL= (0..7) 1 1 1 0 0 0 0 0 ##$CNFTXDR= (0..7) 1 2 4 0 0 0 0 0 ##$COMDIG2= 1 ##$CPDBTY= <no> ##$CRCOTY= <tty13> ##$DIGI140= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIB12= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIB16= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIFA= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIHA= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIHAF= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIHRD= (0..7) 1 0 0 0 0 0 0 0 ##$DIGIIA= (0..7) 0 0 0 0 0 0 0 0 ##$DIGIO16= (0..7) 0 0 0 0 0 0 0 0 ##$DIGISA= (0..7) 0 0 0 0 0 0 0 0 ##$DIGISAF= (0..7) 0 0 0 0 0 0 0 0 ##$DIGISL= (0..7) 0 0 0 0 0 0 0 0 ##$DIGITYI= (0..7) 0 0 0 0 0 0 0 0 ##$DIGITYP= (0..7) 0 0 0 0 0 0 0 0 ##$DIGITZ= 0 ##$FCUMEM= (0..7) 258048 258048 258048 0 0 0 0 0 ##$FCUPAL= (0..7) 1 1 1 0 0 0 0 0 ##$FQMIX= 0 ##$HFAC= 3 ##$HPCU= 0 ##$HPCUTY= <no> ##$HPTXLP= (0..3) -1 -1 -1 -1 ##$HPTXPI= (0..3) 0 0 0 0 ##$HPTXPO= (0..3) 0 0 0 0 ##$HPTXTY= (0..3) 0 0 0 0 ##$IF451= -1 ##$IFREQ= 0 ##$INTFPR= 0 ##$LOCKTY= <03> ##$M2FAC= 1 ##$MASTY= <no> ##$MEMPRM= 0 ##$MHFAC= -1 ##$MXFAC= 2 ##$NFCU= 3 ##$NMRCH= 0 ##$NMRMEM= 16384 ##$NRCU= 1 ##$NROUT= 1 ##$PAMPF1= (0..15) 75 99 0 27 2 0 0 -53 0 0 0 0 0 0 0 0 ##$PAMPF2= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF3= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF4= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF5= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF6= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF7= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PAMPF8= (0..15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ##$PH4= 0 ##$PHF4TY= <no> ##$PRAMP1= <tty01> ##$PRAMP2= <no> ##$PRAMP3= <no> ##$PRAMP4= <no> ##$PRAMP5= <no> ##$PRAMP6= <no> ##$PRAMP7= <no> ##$PRAMP8= <no> ##$PREPTY= <06> ##$PRESHLD= 1 ##$PTS160= -1 ##$PTSA2X= (0..7) 0 0 0 0 0 0 0 0 ##$PTSF2X= (0..7) 309 309 309 0 0 0 0 0 ##$PTSFMX= (0..7) 620 620 620 0 0 0 0 0 ##$RCUCDS= (0..7) 16384 0 0 0 0 0 0 0 ##$RCUCFS= (0..7) 1048576 0 0 0 0 0 0 0 ##$RCUCSS= (0..7) 1024 0 0 0 0 0 0 0 ##$RCUI2C1= (0..7) 1073741824 0 0 0 0 0 0 0 ##$RCUI2C2= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C3= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C4= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C5= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C6= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C7= (0..7) 0 0 0 0 0 0 0 0 ##$RCUI2C8= (0..7) 0 0 0 0 0 0 0 0 ##$RDCU= 0 ##$RGTYPE= (0..7) 2 0 0 0 0 0 0 0 ##$ROUTER= 2 ##$RX22TY= <no> ##$SCMTY= <no> ##$SPECTR= 4 ##$SY2FLAG= 0 ##$TFXNUM= 1 ##$TRIPLO2= 4 ##$VTUTY= <05> ##$XFAC= 2 ##END=

;hncags2h3d ;avance-version ;HNCA ;3D sequence with ; inverse correlation for triple resonance using multiple ; inept transfer steps ; ; F1(H) -> F3(N) -> F2(Ca,t1) -> F3(N,t2) -> F1(H,t3) ; ;on/off resonance Ca and C=O pulses using shaped pulse ;phase sensitive using States-TPPI (t1) ;phase sensitive using Echo/Antiecho gradient selection (t2) ;using constant time in t1 ;using constant time in t2 ;with H-2 decoupling - requires lockswitch ;with suppression of protonated carbons ;(S. Grzesiek & A. Bax, J. Magn. Reson. 96, 432 - 440 (1992)) ;T. Yamazaki, W. Lee, M. Revington, D.L. Mattiello, F.W. Dahlquist, ; C.H. Arrowsmith & L.E. Kay, J. Am. Chem. Soc.116, 6464-6465 (1994)

#include <Avance.incl> #include <Grad.incl> #include <Delay.incl>

"d0=3u"

"d10=3u"

"d11=30m"

"d12=20u"

"d13=4u"

"d4=1.7m" "d21=5.5m" "d22=11.0m" "d23=12.4m" "d26=2.3m" "d27=13.3m"

"d20=d27+d0-4u" "d30=d23-d21-d13-p26"

"DELTA=d27-d4-p2" "DELTA1=p16+d16+d13+4u" "DELTA2=d22-d21-p26" "DELTA3=d23-d10-p14" "DELTA4=d21-p16-d16-4u"

"CEN_HN1=(p21-p1)/2" "CEN_HN2=(p22-p2)/2" "CEN_CN2=(p14-p22)/2"

"l3=(td1/2)" "l13=(td2/2)" "ds=ns*2*cnst0"

aqseq 321

1 d11 ze d11 LOCKDEC_ON d11 pl16:f3 pl17:f4 2 d11 do:f3 H2_LOCK 6m LOCKH_OFF 3 d11*2 4 d11*2 5 d11*2 6 d1 pl1:f1 50u LOCKH_ON d12 H2_PULSE p1 ph1 d26 pl3:f3 (CEN_HN2 p2 ph1) (p22 ph1):f3 d26 UNBLKGRAMP (p1 ph2):f1

4u pl0:f1 (p11:sp1 ph1:r):f1 4u GRADIENT(cnst21) d16

(p21 ph3):f3 d21 pl19:f1 (p26 ph2):f1 DELTA2 cpds1:f1 ph1 (p14:sp3 ph1):f2 (CEN_CN2 p22 ph1):f3 d22 (p21 ph1):f3

d13 do:f1 (p26 ph2):f1 20u cpd4:f4

(p13:sp2 ph4):f2 d0 (p14:sp5 ph1):f2 (CEN_CN2 p22 ph1):f3 d4 pl1:f1 (p2 ph1):f1 DELTA (p14:sp3 ph1):f2 d20 pl19:f1 (p14:sp5 ph1):f2 4u (p13:sp8 ph1):f2

d13 do:f4 (p26 ph2):f1 20u cpds1:f1 ph1

(p21 ph1):f3 d10 (p14:sp5 ph1):f2 DELTA3 (p14:sp3 ph1):f2 (CEN_CN2 p22 ph8):f3 d30 d13 do:f1 (p26 ph7):f1 4u GRADIENT(cnst22) d16 DELTA4 pl1:f1

(CEN_HN1 p1 ph1) (p21 ph5):f3 d26 (CEN_HN2 p2 ph1) (p22 ph1):f3 d26 (CEN_HN1 p1 ph2) (p21 ph6):f3 d26 (CEN_HN2 p2 ph1) (p22 ph1):f3 d26 (p1 ph1) DELTA1 (p2 ph1) d13 GRADIENT(cnst23) d16 pl16:f3 4u BLKGRAMP go=2 ph31 cpd3:f3 d11 do:f3 wr #0 if #0 zd H2_LOCK

3m ip6 LOCKH_OFF 3m ip6 lo to 3 times 2 d11 id10 d11 dd30 lo to 4 times l13 d11 rd10 ip4 d11 rd30 lo to 5 times 2 d11 id0 d11 dd20 lo to 6 times l3

d11 LOCKDEC_OFF

exit

ph1=0 ph2=1 ph3=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 ph4=0 2 ph5=0 0 2 2 ph6=3 3 1 1 ph7=3 ph8=0 0 0 0 2 2 2 2 ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2

;pl0 : 120dB ;pl1 : f1 channel - power level for pulse (default) ;pl3 : f3 channel - power level for pulse (default) ;pl16: f3 channel - power level for CPD/BB decoupling ;pl17: f4 channel - power level for CPD/BB decoupling ;pl19: f1 channel - power level for CPD/BB decoupling ;sp1: f1 channel - shaped pulse 90 degree (H2O on resonance) ;sp2: f2 channel - shaped pulse 90 degree (Ca on resonance) ;sp3: f2 channel - shaped pulse 180 degree (Ca on resonance) ;sp5: f2 channel - shaped pulse 180 degree (C=O off resonance) ;sp8: f2 channel - shaped pulse 90 degree (Ca on resonance) ; for time reversed pulse ;p1 : f1 channel - 90 degree high power pulse ;p2 : f1 channel - 180 degree high power pulse ;p11: f1 channel - 90 degree shaped pulse [2 msec] ;p13: f2 channel - 90 degree shaped pulse ;p14: f2 channel - 180 degree shaped pulse ;p16: homospoil/gradient pulse [1 msec] ;p21: f3 channel - 90 degree high power pulse ;p22: f3 channel - 180 degree high power pulse ;p26: f1 channel - 90 degree pulse at pl19 ;d0 : incremented delay (F1 in 3D) [3 usec] ;d1 : relaxation delay: 1-5 * T1 ;d4: 1/(4J(CH) [1.7 msec] ;d10: incremented delay (F2 in 3D) [3 usec] ;d11: delay for disk I/O [30 msec] ;d12: delay for power switching [20 usec] ;d13: short delay [4 usec] ;d16: delay for homospoil/gradient recovery ;d20: decremented delay (F1 in 3D) = d27+d0-4u ;d21: 1/(2J(NH) [5.5 msec] ;d22: 1/(4J(NCa) [11.0 msec] ;d23: constant time delay T(N) = 1/(4J'(NCa) [12.4 msec] ;d26: 1/(4J'(NH) [2.3 msec] ;d27: constant time delay T(C) [13.3 msec] ;d30: decremented delay (F2 in 3D) = d23-d21-d13-p26 ;cnst0: ds = ns * 2 * cnst0 ;l3: loop for phase sensitive 3D using States-TPPI : l3 = td1/2 ;l13: loop for phase sensitive 3D using E/A method : l13 = td2/2 ;in0: 1/(2 * SW(Ca)) = DW(Ca) ;nd0: 2 ;in10: 1/(2 * SW(N)) = DW(N) ;nd10: 2 ;in20: = in0 ;in30: = in10 ;NS: 8 * n ;DS: >= 16, but 2 * ns * m ;td1: number of experiments in F1 ;td2: number of experiments in F2 td2 max = 2 * d30 / in30 ;MC2: States-TPPI in F1 ;MC2: echo-antiecho in F2 ;cpds1: decoupling according to sequence defined by cpdprg1 ;cpd3: decoupling according to sequence defined by cpdprg3 ;cpd4: decoupling according to sequence defined by cpdprg4 ;pcpd1: f1 channel - 90 degree pulse for decoupling sequence ;pcpd3: f3 channel - 90 degree pulse for decoupling sequence ;pcpd4: f4 channel - 90 degree pulse for decoupling sequence

;use gradient program (GRDPROG) : 3sineea_2

;use gradient ratio: cnst21 : cnst22 : cnst23 ; 50 : 80 : 8.1



This archive was generated by hypermail 2b29 : Tue Dec 17 2002 - 01:04:24 PST