An Introduction to the Electronic Structure of Atoms and MoleculesProfessor of Chemistry / McMaster University / Hamilton, Ontario
|
Certainly the early experiments on the properties of electrons did not suggest that any unusual behaviour was to be expected. Everything pointed to the electron being a particle of very small mass. The trajectory of the electron can be followed in a device such as a Wilson cloud chamber. Similarly, a beam of electrons generated by passing a current between two electrodes in a glass tube from which the air has been partially evacuated will cast the shadow of an obstacle placed in the path of the beam. Finally, the particle nature of the electron was further evidenced by the determination of its mass and charge.
Just as classical considerations placed electrons in the realm of particles, the same classical considerations placed light in the realm of waves with equal certainty. How can one explain diffraction effects without invoking wave motion?
In the years from 1905 to 1928 a number of experiments were performed which could be interpreted by classical mechanics only if it was assumed that electrons possessed a wave motion, and light was composed of a stream of particles! Such dualistic descriptions, ascribing both wave and particle characteristics to electrons or light, are impossible in a physical sense. The electron must behave either as a particle or a wave, but not both (assuming it is either). "Particle" and "wave" are both concepts used by ordinary or classical mechanics and we see the paradox which results when classical concepts are used in an attempt to describe events on an atomic scale. We shall consider just a few of the important experiments which gave rise to the classical explanation of dual behaviour for the description of electrons and light, a description which must ultimately be abandoned.
The Photoelectric Effect
Certain metals emit electrons when they are exposed
to a source of light. This is called the photoelectric effect. The pertinent
results of this experiment are
i) | The number of electrons released from the surface increases as the intensity of he light is increased, but the energies of the emitted electrons are independent of the intensity of the light. |
ii) | No electrons are emitted from the surface of the metal unless the frequency of the light is greater than a certain minimum value. When electrons are ejected from the surface they exhibit a range of velocities, from zero up to some maximum value. The energy of the electrons with the maximum velocity is found to increase linearly with an increase in the frequency of the incident light. |
(1) |
|
(2) |
|
Equation (1) is revolutionary. It states that the energy of a given frequency of light cannot be varied continuously, (Click here for note.) as would be the case classically, but rather that it is fixed and comes in packets of a discrete size. The energy of light is said to be quantized and a photon is one quantum (or bundle) of energy.
It is tempting at this point, if we desire a classical picture of what is happening, to consider each bundle of light energy, that is, each photon, to be an actual particle. Then one photon, on striking an individual electron, scatters the electron from the surface of the metal. The energy originally in the photon is converted into the kinetic energy of the electron (minus the energy required for the electron to escape from the surface). This picture must not be taken literally, for then the diffraction of light is inexplicable. Nor, however, can the wave picture for diffraction be taken literally, for then the photoelectric effect is left unexplained. In other words, light behaves in a different way from ordinary particles and waves and requires a special description.
The constant h determines the size of the light quantum. It is termed Planck's constant in honour of the man who first postulated that energy is not a continuously variable quantity, but occurs only in packets of a discrete size. Planck proposed this postulate in 1901 as a result of a study of the manner in which energy is distributed as a function of the frequency of the light emitted by an incandescent body. Planck was forced to assume that the energies of the oscillations of the electrons in the incandescent matter, which are responsible for the emission of the light, were quantized. Only in this way could he provide a theoretical explanation of the experimental results. There was a great reluctance on the part of scientists at that time to believe that Planck's revolutionary postulate was anything more than a mathematical device, or that it represented a result of general applicability in atomic physics. Einstein's discovery that Planck's hypothesis provided an explanation of the photoelectric effect as well indicated that the quantization of energy was indeed a concept of great physical significance. Further examples of the quantization of energy were soon forthcoming, some of which are discussed below.
The Diffraction of Electrons
Just as we have found dualistic properties for light
when its properties are considered in terms of classical mechanics,
so we find the same dualism for electrons. From the early experiments on
electrons it was concluded that they were particles. However, a beam of
electrons, when passed through a suitable grating, gives a diffraction
pattern entirely analogous to that obtained in diffraction experiments
with light. In other words, not only do electrons and light both appear
to behave in completely different and strange ways when considered in terms
of our everyday physics, they both appear to behave in the same way! Actually,
the same strange behaviour can be observed for protons and neutrons. All
the fundamental particles and light exhibit behaviour which leads to conflicting
conclusions when classical mechanics is used to interpret the experimental
findings.
The diffraction experiment with electrons was carried
out at the suggestion of de Broglie. In 1923 de Broglie reasoned that a
relationship should exist between the "particle" and "wave" properties
for light. If light is a stream of particles, they must possess momentum.
He applied to the energy of the photon Einstein's equation for the equivalence
between mass and energy:
|
|
|
|
|
(3) |
|
|
Line Spectra
A gas will emit light when an electrical discharge
is passed through it. The light may be produced by applying a large voltage
across a glass tube containing a gas at a low pressure and fitted with
electrodes at each end. A neon sign is an example of such a "discharge
tube." The electrons flowing through the tube transfer some of their energy
to the electrons of the gaseous atoms. When the atomic electrons lose this
extra energy and return to their normal state in the atom the excess energy
is emitted in the form of light. Thus the gaseous atoms serve to transform
electrical energy into the energy of light. The puzzling feature of the
emitted light is that when it is passed through a diffraction grating (or
a prism) to separate the light according to its wavelength, only certain
wavelengths appear in the spectrum. Each wavelength appears in the spectrum
as a single narrow line of coloured light, the line resulting from the
fact that the emitted light is passed through a narrow slit (thus producing
a thin "line" of light) before striking the grating or the prism and being
diffracted. Thus a "line" spectrum rather than a continuous spectrum is
obtained when atomic electrons are excited by an electrical discharge.
An example of such a spectrum is given in Fig. 1-1, which illustrates the visible spectrum observed for the hydrogen atom. This spectrum should be contrasted with the more usual continuous spectrum obtained from a source of white light which consists of a continuous band of colours ranging from red at the long wavelength end to violet at short wavelengths.
The energy lost by an electron as it is attracted
by the nucleus appears in the form of light. If all energies were possible
for an electron when bound to an atom, all wavelengths or frequencies should
appear in its emission spectrum, i.e., a continuous spectrum should be
observed. The fact that only certain lines appear implies that only certain
values for the energy of the electron are possible or allowed. We could
describe this by assuming that the energy of an electron bound to an atom
is quantized. The electron can then lose energy only in fixed amounts corresponding
to the difference in value between two of the allowed or quantized energy
values of the atom. Since the energy of a photon is given by
|
(4) |
|
Equation (4) was put forward by Bohr in 1913 and is known as Bohr's frequency condition. It was Bohr who first suggested that atomic line spectra could be accounted for if we assume that the energy of the electron bound to an atom is quantized. Thus the parallelism between the properties of light and electrons is complete. Both exhibit the wave-particle dualism and the energies of both are quantized.
The Compton Effect
The results of one more experiment will play an
important role in our discussions of the nature of electrons bound to an
atom. The experiment concerns the direct interaction of a photon and an
electron.
In order to determine the position of an object we
must somehow "see" it. This is done by reflecting or scattering light
from the object to the observer's eyes. However, when observing an object
as small as the electron we must consider the interaction of an individual
photon with an individual electron. It is found experimentally—and this
is the Compton effect—that when a photon is scattered by an electron, the
frequency of the emergent photon is lower than it was before the scattering.
Since e = hn,
and n is observed to decrease, some of
the photon's energy has been transmitted to the electron. If the electron
was initially free, the loss in the energy of the photon would appear as
kinetic energy of the electron. From the law of conservation of energy,
|
In 1926 Schrodinger, inspired by the concept of de Broglie's
"matter waves," formulated an equation whose role in solving problems in
atomic physic's corresponds to that played by Newton's equation of motion
in classical physics. This single equation will correctly predict all physical
behaviour, including, for example, the experiments with electrons and light
discussed above. Quantization follows automatically from this equation,
now called Schrodinger's equation, and its solution yields all of the physical
information which can be known about a given system. Schrodinger's equation
forms the basis of quantum mechanics and as far as is known today the solutions
to all of the problems of chemistry are contained within the framework
of this new mechanics. We shall in the remainder of this site concern ourselves
with the behaviour of electrons in atoms and molecules as predicted and
interpreted by quantum mechanics.
|
|
|
|